Atomic Decomposition by Basis Pursuit

نویسندگان

  • Scott Saobing Chen
  • David L. Donoho
  • Michael A. Saunders
چکیده

The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an “optimal” superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as ill-posed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to large-scale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interior-point methods. We obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation and Filtering Using Sparse Modeling

Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursui...

متن کامل

Application of basis pursuit in spectrum estimation

In this paper, we apply Basis Pursuit, an atomic decomposition technique, for spectrum estimation. Compared with several modern time series methods, our approach can greatly reduce the problem of power leakage; it is able to superresolve; moreover, it works well with noisy and unevenly sampled signals. We present experiments on bizarrely spaced radial velocity data from one of the newly-discove...

متن کامل

A Review on Signal Decomposition Techniques

Analysis of audio and musical information signals deals with the decomposition into atoms. This subject is most interesting and useful for the researchers who want to invent the inherent properties of the signal under decomposition and to construct a new version of it. Many algorithms have been proposed for the decomposition of audio and musical content and methodologies have been demonstrated ...

متن کامل

Basis Pursuit for Seismic Spectral decomposition

Spectral decomposition is a powerful analysis tool used to identify the frequency content of seismic data. Many spectral decomposition techniques have been developed, each with their own advantages and disadvantages. The basis pursuit technique produces a high time frequency resolution map through formulating the problem as an inversion scheme. This techniques differs from conventional spectral...

متن کامل

A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Abstract—A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998